Proposed Table of Contents – TRB Higwhay Safety Manual April-June 2003

Proposed HSM Structure

Part I – Introduction and Fundamentals

Chapter 1. Introduction and Overview

- 1.1 Purpose
- 1.2 Background on the Need for HSM
- 1.3 Scope of the HSM
- 1.4 Intended Audience
- 1.5 Intended Use of the HSM
- 1.6 Context for the HSM: Use and Misuse of the Manual

Safety Management Systems

Highway Improvement Process

Context Sensitive Design

- 1.7 Nature of the HSM
- 1.8 Organization of HSM

Chapter 2. Fundamentals

- 2.1 What is Safety?
- 2.2 How Road Safety is Measured

Crash Counts

Estimation Accuracy

Supplementary Data

Assigning Values to Crashes for Prioritization

2.3 Safety Performance Functions and Crash Modification Factors

Common Safety Performance Functions

How Crash Modification Factors are Obtained

Traffic "Exposure", Traffic Mix and Demand Management

2.4 Human Factors in Road Safety

Driver Characteristics

Positive Guidance

Design Consistency

- 2.5 Speed and Safety
- 2.6 Safety Evaluation
- 2.7 User Safety Culture

Part II - Knowledge

Chapter 3. Highway Segments

3.1 Safety Effects of Highway Design Elements

Cross Section Elements

Traveled Way: Lane Width and Number of Lanes

Shoulders: Shoulder Width and Type

Curbs

Medians

Two-way Left-turn Lanes

Passing Lanes/Short Four-Lane Sections on Two-Lane Highways

Roadside Features and Elements

Roadside Safety Analysis Program

Roadside Hazard

Guardrails and Barriers

Alignment Elements

Horizontal Alignment

Vertical Alignment

Special Features

3.2 Safety Effects of Traffic Control and other Operational Elements

Signs, Delineation, and Pavement Markings

Shoulder, Transverse, and Centerline Rumble Strips

Speed Zoning

Passing on Two-Lane Roads

On-Street Parking

Intelligent Transportation Systems and Traffic Management Systems

Traffic Calming

3.3 Pedestrian and Bicycle Safety on Highway Segments

Bicycle Routes

Sidewalks

Mid-block Pedestrian Crossings

3.4 Safety Effects of Other Elements

Highway Lighting and Illumination

Weather Issues

Adverse Weather and Low Visibility Systems

Snow and Ice control

One-way Street Systems

Chapter 4. Intersections

4.1 Safety Effects of Intersection Design Elements

Intersection Geometry

Roundabouts

Horizontal and Vertical Alignments of Intersection Approaches

Left and Right Turn Lanes and Treatments

Auxiliary Through Lanes

Sight Distance

4.2 Safety of Pedestrians and Cyclists at Intersections

Pedestrian Crossing Design

Crosswalk Markings

Median Refuge Islands

Bicycle Considerations

Other Access Points in Close Proximity

Roadside Design

4.3 Safety Effects of Intersection Traffic Control and Operation Elements

Channelization

Type of Traffic Control

Traffic Signal Operations

Left Turn Operation

Right Turn Operation

Detector Placement and Signal Control on High Speed Approaches

Phase and Cycle Duration

Actuated Control

Other Operational Considerations

Advance Warning Flashers

Pedestrian Traffic Control

Signing, Marking and Delineation

Traffic Calming

4.4 Safety Effects of Other Intersection-Related Features

Transit Stop Placement

Illumination

Automated Intersection Enforcement

Chapter 5: Interchanges

5.1 Safety Effects of Interchange Design Elements

Interchange Type/Configuration

Merge/Diverge Areas

Ramps

Ramp Terminals

Acceleration and Deceleration at Ramp Terminals

Pedestrian Considerations

Other Design Elements

Closely Spaced Intersections

5.2 Safety Effects of Traffic Control and Operations Elements

Traffic Control at Ramp Terminals

Ramp Metering

5.3 Safety Effects of Interchange Spacing

Chapter 6: Special Facilities and Geometric Situations

6.1 Railroad-Highway Grade Crossings

Design Elements

Illumination

Alignment at Crossing [Future HSM edition]

Sight Distance [Future HSM edition]

Proximity of Highway Intersections [Future HSM edition]

Traffic Control and Operations

Choice of Advanced Traffic Control at Crossing

Traffic Control at Crossing

Operational Decisions

6.2 Construction and Maintenance Work Zone Areas

Design of Elements of Work Zones

Lane Closure Merge Design

Closure Design and Centerline Treatments

Duration, Length, and Time of Day

Other Design Elements

Operations and Traffic Control

Speed Control in Work Zones

Traffic Control Devices

- 6.3 Bridges
- 6.4 High Occupancy Vehicle (HOV) Lanes/Facilities
- 6.5 Tunnels
- 6.6 Reversible Lanes
- 6.7 Weaving Areas, Collector-Distributor Roads, and Frontage Roads
- 6.8 Transit Facilities and Related Features
- 6.9 Bicycle and Pedestrian Facilities and Related Features

Chapter 7. Road Networks

- 7.1 Introduction
- 7.2 Safety in Transportation Network Planning
- 7.3 Safety in the Planning and Design of Residential Neighborhoods and

Commercial Areas

- 7.4 One-Way Systems and Turn Restrictions
- 7.5 Safety in Traffic Calming
- 7.6 Access Management

Access Point Elements

Access Point Density

Other Access Point Elements

- 7.7 Urban Commercial Areas
- 7.8 Transitions Between Highway Facility Types

Part III – Predictive Methods

Chapter 8. Rural, Two-Lane Roads

- 8.1 Introduction
- 8.2 Methodology
- 8.3 Applications
- 8.4 Example Problems
- 8.5 References

Appendices

Chapter 9. Rural, Multi-lane Highways

- 9.1 Introduction
- 9.2 Methodology

Overview of the Crash Prediction Algorithm

Structure of the Crash Prediction Algorithm

Calibration of the Algorithm to Local Conditions

Roadway Segments

At-Grade Intersections

Predicted Crash Frequency for an Entire Project

Roadway Segments

Base Model

Calibration Factors

Crash Modification Factors

At-Grade Intersections

Base Models

Calibration Factors

Crash Modification Factors

9.3 Procedures for Application

Crash Prediction when Site-Specific Crash History Data Are Not Available

Crash Prediction when Site-Specific Crash History Data Are Available Situations in Which the EB Procedure Should and Should Not Be Applied Empirical Bayes (E-B) Procedure

- 9.4 Safety Issues Not Explicitly Addressed by the Methodology
- 9.5 Sample Calculations
- 9.6 Software for Performing Calculations
- 9.7 References

Appendices

Chapter 10. Urban and Suburban Arterial Highways

10.1 Introduction

10.2 Methodology

Overview of the Crash Prediction Algorithm

Structure of the Crash Prediction Algorithm

Calibration of the Algorithm to Local Conditions

Roadway Segment

At-Grade Intersections

Predicted Crash Frequency for an Entire Project

Roadway Segments

Base Model

Calibration Factors

Crash Modification Factors

At-Grade Intersections

Base Models

Calibration Factors

Crash Modification Factors

10.3 Procedures for Application

Crash Prediction when Site-Specific Crash History Data Are Not

Available

Crash Prediction when Site-Specific Crash History Data Are Available Situations in Which the EB Procedure Should and Should Not Be Applied Empirical Bayes (E-B) Procedure

- 10.4 Safety Issues Not Explicitly Addressed by the Methodology
- 10.5 Sample Calculations
- 10.6 Software for Performing Calculations
- 10.7 References

Appendices

Part IV – Safety Management of a Roadway System

Purpose

Background

Chapter 11. Identification of Sites With Promise

Chapter 12. Diagnosis of the Nature of Safety Problems at Specific Sites

Chapter 13. Selection of Countermeasures to Reduce Accident Frequency and

Severity at Specific Sites

Chapter 14. Economic Appraisal of all Sites under Consideration

Chapter 15. Prioritize Rankings of Improvement Projects

Part V – Safety Evaluation (include alternatives)

Chapter 16. Overview of Estimating the Safety Effect of Implemented Interventions

- 16.1 Introduction
- 16.2 Why Evaluate?
- 16.3 Data Needs and Limitations
- 16.4 Approach to Conducting A Valid Evaluation Glossary